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Figure 1: Snapshots of a real-time virtual martial arts warrior, illustrating quadratic Bézier action curves hooked up with 
single springs, sinusoidal fusiform muscles and final skin deformation via smooth skinning. 

 

Abstract - We propose significant simplifications in 
muscle modeling and simulation to facilitate real-time 
anatomical skin deformation for full-body articulated 
characters. The muscle shape is a function of an animated 
quadratic Bézier action curve and control rings derived 
from it. The action curve is uniformly sampled to derive 
control rings driven by a scaled sinusoidal equation to 
model fusiform shapes. A single spring is attached between 
the central control point and the midpoint vector between 
the extreme control points of the Bézier action curve. Care 
is taken to stabilize local coordinates for each muscle 
vertex to enable glitch-free skin deformation. The 
character's polygonal mesh is smooth-skinned using a two-
layered approach: first to the joints, and then to the muscle 
vertices. Lastly we show how different prominent muscles 
can be reasonably approximated with the proposed 
fusiform model. A typical 4000-vertex character skinned 
with sixty four 72-vertex muscles is able to run on average 
CPUs at 60-80 fps. Our main contribution is the simplified 
dynamics driven curved action-axis, which enables 
economical and expressive muscle animation. 

Keywords: Muscle-based deformation, real-time 
dynamics, appealing characters. 

 

1 Introduction 
 Appealing character deformation could play an essential 
role in believable gaming and virtual world experience. 
Character traits like sluggishness, power, etc. can be 

emphasized much better with anatomy-driven deformation 
than current real-time skeletal deformation of surfaces. Such 
visual emphasis of traits affords better immersion and 
connection to virtual characters. However, the high simulation 
cost of anatomy-driven deformations has limited their 
application in the real-time domain. On the other hand, video 
games have been steadily pushing the quality envelop, given 
rapid advances in hardware and increasing consumer appetite. 
Realistic and appealing deformation for game characters is 
therefore a relevant topic for the modern game industry. 

 Layered anatomical models have achieved body 
deformation with accurate muscle, bone, fat and skin 
dynamics. They achieve more robust results than analytical 
surface deformation models like smooth-skinning. Localized 
details like muscle bulges, sliding and stretching of skin over 
bones, loose skin, etc. are better captured with anatomical 
methods. Some of these features are being adapted to 
interactive applications, by pre-computing the dynamics 
simulation, and "playing back" the most appropriate 
approximation in response to event triggers. Though this 
alleviates the abovementioned limitations, it still lacks the 
expressive repertoire of accurate simulations. In some cases, 
the played-back dynamics response may even violate physical 
constraints. 

 In this paper, we address the lack of efficient dynamics 
methods to achieve anatomy-driven body deformation in real-
time. We propose a flexible muscle representation that can be 
economically driven by single-spring dynamics. We adapt the 
smooth-skinning metaphor to blend conventional skeleton-
driven deformation with our muscle-driven deformation. The 
resulting muscle-based skin contouring and oscillation 



(commonly termed as jiggle) can generate significant appeal to 
real-time characters.  

 The focus of this paper is not on accurate muscle 
modeling but on simulating efficient local deformations and 
oscillations which increase visual appeal without violating 
significant physical constraints. We also demonstrate how a 
variety of prominent muscles can be modeled with the same 
generic representation, aided with intuitive design tools.  

2 Previous Works 
 An in-depth survey on recent multi-layered anatomical 
models and skin deformation can be found in [9] [2] [10]. We 
choose to summarize the methods here for completeness, and 
later present a more focused comparison of our proposals with 
relevant methods (see Sec. 6).  

 Multi-layered anatomical models have been organized 
into skeleton, muscle, fatty tissues and skin layers. The 
skeleton is first defined using joint design tools. Muscle 
primitives are then added, with the origin and insertion points 
of each muscle constrained to the appropriate joints. The skin 
surface could be handcrafted or "draped" over the muscles 
using contour detection and implicit functions. Different levels 
of dynamics and kinematics constraints control the 
deformation of these models, using procedural volume 
preservation, elasticity, collision avoidance, and weighted 
influence functions. The general complexity of these 
representation and control methods make anatomical models 
difficult to realize in real-time. 

 [4] used Free-Form Deformations (FFD) to approximate 
muscle deformation. [8] applied Dirichlet Free-Form 
Deformation method (DFFD) for hand deformation. It is 
generally hard to emulate muscles in complex regions such as 
the shoulders, since the relationships between FFD 
deformations and high-dimensional joint rotations are not well 
defined. Finite Element Mechanics (FEM) models accurately 
deform volumes defined by connected cells that impart torsion 
forces on each other using physics of energy transfer [15]. 
However they are usually too complex for real time 
simulation.  

 [11] proposed several surface representations for muscle 
models that could be deformed with volume preservation 
formulae. They modeled simple fusiform muscles with 
ellipsoids and multi-belly sheet-like muscles with multiple 
instances of these fusiform muscles. [16] used similar volume-
preserved cylinders, where each muscle segment's influence on 
skin vertices was analytically calculated. The fusiform model 
was further enhanced with spring constraints [10], stable local 
coordinates [2] and curved action axis [17]. Though these 
enhancements increase the generality of the fusiform muscle's 
shape and motion, they add significantly to the computation. 
Real time performance of these models had been demonstrated 
using only a few muscles at a time, without any skin 
deformation. We draw inspiration from these enhancements, 
and simplify their representation to facilitate fast stable 
animation for full-body humans (see Sec. 3). 

 [14] [16] modeled sophisticated elastic skin models that 
are first deformed by muscle slices, and then skin triangles are 
adjusted based on spring forces on each edge. Though such 
elastic models achieve several interesting effects like skin 
sliding and stretching, the simulation cost is again too high for 
real time performance. [16] chose to statically bind the skin 
layer and move it relative to underlying tissue deformation. [7] 
presented a similar approach in blending handcrafted shapes 
with skin deformed by skeletal motion. A different approach is 
adopted in [1] who used per-frame mesh regeneration by 
sampling the implicit surface envelop of underlying tissue. As 
[16] pointed out, this approach may have repercussions on 
faithful texture movement for non-smooth surfaces. We draw 
inspiration from the unified approach to skin deformation in 
[16] and [7], and propose a smooth-skinned solution for 
muscle deformation (see Sec. 3 and 4).  

 We feel that an expressive and simplified muscle/skin 
framework is sufficient for current real-time applications. Our 
goals are to afford easy setup and representation of muscles, 
minimal semi-automatic pre-computation steps, economical 
on-the-fly dynamics simulation, and a skin deformation 
framework that builds on top of existing smooth skinning to 
joints. Most importantly, it should be easy to blend our 
methods with existing character production pipelines, so that 
we can see their rapid incorporation in commercial games.  

 In this paper, we propose an adaptation to the surveyed 
musculature modeling methods to facilitate efficient dynamics 
simulation. First we explain muscle representation using 
quadratic Bézier curves. We derive local coordinate frames for 
each cross section of the muscle, before presenting the shape 
construction with volume preservation. Next we explain the 
simplified single-spring dynamics representation and 
simulation mathematics. We then describe how we combine 
joint and muscle based deformation on the polygonal character 
mesh using the smooth-skinning metaphor. Lastly, we present 
the results and a critical analysis of our contributions. 

3 Muscle Creation 
3.1 Representation Using Quadratic Bézier 

Action Curve 
 As proposed by [10] and [1], the action line drives the 
shape and movement of the associated muscle. It is 
constrained to skeletal joints and moves with them. Forces and 
collision detection required to control the movement of 
individual action line segments may prove expensive for real-
time applications. [17] first proposed action curves using cubic 
rational B-Spline instead. Although their representation is 
more general, we believe that the overhead involved in 
calculating C2 smooth action curves is unnecessary, as muscles 
generally look alright with C1 continuity. We propose a 
quadratic Bézier curve representation for the action curve, to 
facilitate faster computation and simpler control.  The shape of 
the entire action curve can be changed by just manipulating 
the middle control point. We chose simplicity in calculation 
and representation, as this element is a basic building block 
that needs to be recomputed often (usually 60-100 per 



character). From our tests, we observe that the quadratic 
Bézier curves adequately define shape and movement for real-
time muscles. 

 
Figure 2: The three control points Porg (1), Pmid (2) and Pins (3) of 
the muscle action curve, the constrained control point Pconst (4), 
and the two attachment joints (5 and 6). Notice how Pmid moves 

towards Pconst when perturbed, causing the Bézier curve to change 
shape smoothly. 

 
 A quadratic Bézier curve requires three control points 
(P0, P1, P2) which can be mapped to the muscle origin, mid-
point, and insertion point (Porg, Pmid, Pins), as shown in Fig. 2. 
During muscle creation, the origin and insertion joints of the 
skeleton are chosen, and Porg and Pins are parented to these 2 
joints respectively. These two control points can be in any 
arbitrary position (usually guided by anatomical information) 
in their respective parent's coordinate frame. By default, Pconst 
is constrained to the midpoint between Porg and Pins, but the 
user can shift this control point to change the muscle 
curvature. Pconst retains user-defined offsets when Porg and Pins 
move with the joints (see Fig. 2). 

 The second control point of the Bézier curve is 
represented by a freely-hanging dynamic control point Pmid, 
which is attached to Pconst via a spring. The Bézier action curve 
is created from the control points (Porg, Pmid , Pins), so that the 
muscle moves with soft-body dynamics as the joints (and 
consequently Pconst) move in space. The soft body oscillations 
are especially noticeable immediately after the origin/insertion 
bones come to rest. 

3.2 Construction of Local Coordinate Frame 
 After creating the action curve, we sample Ncs uniformly 
spaced points along the curve, where Ncs is a user specified 
number. Each of the points represents the center Ci of each 
cross-sectional slice i of the muscle. We then need to construct 
the local coordinate frame for each of these cross-sections. We 
choose to avoid the Frenet frame formulation because of the 
problems identified in [17]. The normal (calculated as a 
second derivative) at point p(u) on the curve is sensitive to the 
curve shape (see Fig. 3a). In other words, the cross-section 
coordinate frame starts rotating as the action curve changes 
shape, causing the resultant muscle shape to twist undesirably 
along its main action curve axis during animation. 
Furthermore, the normal for p(u) is undefined for a straight 
line, which may be the initial state of an action curve. 

 Figure 3: Stable Local Coordinate Frame. a) Normal inverts due 
to change in action curvature; b) This problem is solved by using 

a reference up-vector (big arrow). 

 To stabilize the abovementioned problem, we choose a 
user-defined up-vector v (large arrow in Fig. 3b) to derive the 
local coordinate frame. We use the tangent of the curve at p(u) 
(where p(u) = Ci) and the up-vector v for the entire muscle, to 
construct a local coordinate frame that is independent of the 
shape of the action curve. First, the normalized curve 
derivative is calculated at cross-section i (Eqn. 1). Two other 
orthogonal axes are then calculated. 
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 The axes of the coordinate frame for cross-section i are 
then ,  and , which correspond to the local x, y and z 
axes respectively. The up-vector v is set to the joint's local y-
axis by default and could be changed interactively via the 
muscle setup tool. Note that the local coordinate frame of a 
cross-section will twist by 180 degrees sharply if the tangent 
vector  coincides with the up-vector direction. This depends 
on the range of motion of the muscles as the joints rotate. If 
such an event is likely to happen, the up-vector should be 
manually adjusted so that  will never cross its direction. For 
example, it can be changed to a direction that is orthogonal to 
the range of motion for the given muscle. 
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3.3 Construction/Control of Muscle Shape 
 With the local coordinate frame defined for each cross-
section of the muscle, we can now determine the positions of 
the muscle vertices in order to define shape. The goal of our 
formulation is to generate more expressive shapes than 
existing methods in [11] [16] [10] [17], without adding much 
computation complexity. We characterize the fusiform muscle 
with two main properties: bulge size S and taper T. The size 
parameter controls the girth of the center of the fusiform 
shape. Apart from the normal volume-preservation related 
deformation, this parameter is also useful for isometric 
contraction simulation where the muscle bulge increases 
without a change in muscle length. The taper parameter 
controls the curvature at end points, which is useful for 
approximating tendons.  



The bind pose radius ri of each muscle cross-section is 
calculated as: 
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 Each muscle cross-section i has a user-defined Ndiv 
number of muscle vertices it will control. Each of these 
vertices vij (where j=1, 2,..., Ndiv) has an offset oij from the 
cross-section center Ci. This offset is stored in the local 
coordinate system of cross-section i. When the muscle is 
created initially, each of the vertices vij for cross-section i will 
get the offset value assigned as oij = ri. The local coordinate 
frame of each muscle vertex vij is a simple addition of its offset 
oij with the local coordinate frame of cross-section i. We allow 
these offsets to be adjusted by the user through our muscle 
shaping tool implemented in MayaTM in order to sculpt 
arbitrary shapes easily (see muscle design workflow in Fig. 4). 
Such an offset-from-center representation also allows for CT 
scan information of real muscle cross-sections to be 
incorporated [10] [17]. During simulation, the cross-section 
offsets are proportionally scaled by volume-preserved shape 
distortion functions (see Sec 3.4). 

Figure 4: Expressive shape representation.  
TOP: Shapes achieved with different size and taper settings; 

BOTTOM: Muscle design workflow - a) Affix to skeleton; b) Set 
size, taper and control ring radius; c) Sculpt muscle; d) Tweak 

action axis curvature; e) Test deformation for joint motion range 

3.4 Muscle Deformation 
 The basic volume preservation of the muscle is based on 
an approximation of the fusiform shape by an ellipsoid model 
[16] [11]. The volume of an ellipsoid is: 
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where r is the radius of the mid cross-section and l is the 
length of the ellipsoid. The l in this case represents the 
Euclidean distance between Porg and Pins of the action curve, 
instead of the actual arc length of the action curve which is 
computational expensive to calculate. Although this 
approximation may violate the volume preservation axiom, it 

can be compensated with a scaling factor (described later in 
Eqn. 7). 

 We can calculate each new offset oij' as l changes, by 
using this proportional relationship (derived from Eqn. 5): 
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where lrest is the rest length of the muscle in bind pose and lnew 
is the new muscle length at a certain time instance. 

 However, we have observed that the general ellipsoid 
volume preservation method [11] does not yield visually 
obvious deformation due to small changes in muscle lengths 
(typical of humanoid characters). Our aim is to have visually 
appealing skin deformations, so muscle bulges must be 
perceptible. Thus we added a new layer of control that allows 
the user to non-linearly scale the volume of the muscle as the 
length changes, as shown in Eqn. 7. This is modeled by a 
scaled sinusoidal function which causes no additional bulge at 
rest length. In the equations below, B is the bulge multiplier 
and ∆l is the length difference (lrest - lnew). 
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 We realized that with Eqn. 7, the muscle works well for 
flexion but thins out significantly when stretched. Thus we 
introduced another user-defined positive-valued attribute 
bulge-to-stretch-ratio R to counter this effect. This is taken 
care of in the second condition in Eqn. 8. 

Figure 5: With and without the bulge multiplier B. The muscle in 
the middle without the multiplier produces bulges which are 

mathematically correct but hardly noticeable while the muscle on 
the right with the multiplier produces visually noticeable bulges. 

3.5 Muscle Dynamics 
 We now present the dynamics calculations performed on 
the underlying Bézier action curve. A spring is attached to the 
control points Pmid and Pconst. This spring produces a force at 
each time-step ∆t that causes Pmid to move towards Pconst. Since 
Pmid is the middle control point which determines the curvature 



of the Bézier curve, the Bézier curve changes its shape as Pmid 
moves. The force exerted on Pmid (Hooke's Law, Eqn. 10) and 
then its acceleration (Newton's Law, Eqn. 11) is calculated: 

            [9] )()()( txtxtx constmid −=Δ
           [10] )()( txktF sspring Δ−=
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where x(t) represents control point position at time t, ks is the 
user-defined spring constant and mmuscle is the user-defined 
mass of the muscle.  

 Verlet integration is used to find the position of Pmid at 
the end of each time-step. This method was chosen because it 
offers more stability at almost the same cost as simpler 
integration methods such as Euler integration, and is faster 
than accurate methods such as 4th-order Runge-Kutta. We 
have used a modified Verlet integration scheme which allows 
for a simple damping effect: 
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 Notice that the velocities of Pmid and Pconst (required by 
Forward Euler and other conventional integration methods) 
have been omitted from all the above equations. Velocity is 
normally used to determine the amount of drag force affecting 
an object. However, the drag force is approximated by scaling 
the last two terms in Eqn. 12 with , a user-specified 
damping coefficient. This omission of velocity implies fewer 
calculations per time-step. 
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Figure 6: Single spring dynamics achieve pleasing drag and 
oscillation for a set of leg muscles 

4 Skin Deformation 
 A two-layer skinning approach is used to skin the 
character's polygonal mesh. The first layer is the usual 
smooth-skinning of mesh vertices to joints, giving basic 
deformation of the mesh at acceptable cost. The second layer 
is the smooth skinning of the mesh to vertices of influencing 
muscles. This allows for addition of local deformation and 
oscillation to the skin, due to underlying muscle distortion and 
dynamics. We now look at these two levels of skinning in 
detail. 

 The smooth skinning of the mesh to joints is done in the 
conventional way: 

∑ −= 0
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where vjoint is the final skin vertex position in world space due 
to joint influence, wi is the weight of joint i, Mi is the current 
world matrix of joint i, Bi is the bind pose world matrix of 
joint i, and v0 is the bind pose skin vertex position in world 
space. We restrict each skin vertex to be influenced by a 
maximum of 3 joints, and weight paint tools have been setup 
in MayaTM to allow for intuitive weights assignment. 

 Next we need to make an association between the skin 
vertices and the muscle vertices which influence them. Each 
skin vertex in bind-pose is associated with the nearest Nm 
muscle vertices. The muscle-vertex-to-skin-vertex weight is 
obtained by taking the inverse of the separation distance so 
that nearer points get more weight. After these computed 
weights are normalized, the user can assign weights for the 
association between skin vertices and entire muscles (not 
muscle vertices).  This is done using the same weight 
assignment tool, exactly following the weight painting 
metaphor for smooth skinning with bones. This stage 
explicitly allows users to control the amount of influence from 
underlying muscles on various parts of the skin mesh. 

 Each of the skin vertices are affected by the muscle 
vertices via smooth skinning, similar to Eqn. 13:  

∑ −= 0
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where vmuscle is the final smooth-skinned point in world space 
after muscle deformation, W'i is the weight of the i-th muscle 
that is affecting the skin vertex, w'i is the weight of the i-th 
muscle vertex that is affecting the skin vertex and v0 is the 
bind pose skin vertex position in world space. M'i is the 
current world matrix and B'i is the bind pose world matrix for 
each associated muscle vertex. These matrices are derived 
from the local coordinate frames described in Sec. 3.2 and 3.3.  

 We pre-multiply W'iw'i (Eqn. 14) for the purpose of  
efficient storage and computation. We also pre-multiply Bi

-1v0 
(Eqn. 13) and B'i-1v0 (Eqn. 14) to save repeated matrix 
multiplications.  

 The final position of each vertex is calculated by 
blending the results of Eqn. 13 and 14 together: 

musclejofinal vvv += int       [15] 

 Note that ∑ =+ 1'' iii wWw  and we enforce this 

constraint during weight painting. This ensures that there is no 
need to explicitly weight vjoint and vmuscle and normalize vfinal in 
Eqn. 15, thus saving expensive division operations. In our 
demo [6], we allow for scaling of the components in Eqn. 15 
for quick feedback on different weight blending effects. 



 By using the smooth skinning metaphor, we have 
managed to retain the simplicity and additive nature of skin 
deformation even after influencing muscles have been added. 
We have implemented the muscle weight paint tool to closely 
mimic the joint weight paint tool, to facilitate easy usage by 
artists who are familiar with existing weight paint workflows. 
The muscle-vertex-to-skin-vertex weight complexity is 
purposely hidden from users to protect them from laborious 
extra specification. By setting reasonable constraints to the 
number of influence joints and muscle vertices, we ensure that 
the deformation structure does not bloat unmanageably.  

5 Results 
 A well-defined primary character might contain around 
70-80 muscles while a secondary character might contain 
around 30-40 muscles by simplifying muscle groups. We 
assign 72 vertices per muscle to achieve reasonable binding 
results without flickers or sharp edges. Each muscle is attached 
to only two joints, thus the total number of joints does not 
affect the performance of the system. 

 Test A - Muscle Dynamics: We examined how well a 
maximum of 200 muscles (approximately 2.5 main characters) 
runs on an average system of 2.6GHz with 2.0GB RAM and 
GeForce 7800GS graphics card. These muscles were subjected 
to constant movement for 20 seconds, and the average FPS 
was recorded (see Table 1). The average frame-rate for 200 
muscles is 35fps and this shows that our muscle setup (with no 
skinning yet) is efficient in delivering real-time dynamics-
based movements, for 2-5 characters. 

Muscles 20 40 60 80 100 
Avg FPS 267 157 111 85 70 
Muscles 120 140 160 180 200 
Avg FPS 59 50 44 39 35 
Table 1: Muscle dynamics performance (without skinning) 

 Test B - Skinning: A typical game character is skinned 
to 21 joints (with each skin vertex affected by a maximum of 3 
joints) and 0-80 muscles (with each skin vertex affected by a 
maximum of 4 muscle vertices). As before, the number of 
joints does not affect the performance of the system. We used 
up to 20,000 skin vertices and subjected the character to 
constant motion for 20 seconds. The results are as follows: 

No. of 
Muscles 

5000 
vertices 

10000 
vertices 

15000 
vertices 

20000 
vertices 

0 146 105 68 58 
10 92 53 35 29 
20 81 48 32 27 
30 73 43 30 25 
40 67 41 28 24 
50 62 38 27 23 
60 59 36 26 22 
70 57 34 25 21 
80 55 33 24 20 

Table 2: Average muscle simulation and skin deformation 
performance in FPS for different skin mesh resolutions 

 The case with 0 muscles serves as a control, to indicate 
the cost of rendering and skeletal deformation without 
muscles. As shown in the results, we are able to get real-time 
performance with 70-80 muscles (with 72 vertices each). Thus 
we have already achieved efficient results using the CPU 
alone. 

 Test C - Appealing Deformation In Real-Time: We 
have achieved a full-body muscle representation that deforms 
a character's skin in real time without any significant artifacts, 
and that too, without any hardware acceleration. The real-time 
executable demo of an energetic virtual martial artist 
accompanying this paper [6] comprehensively validates our 
claims. We created a character with 3671 vertices and skinned 
it to 21 joints and 64 muscles. All other muscle and influence 
settings were identical to Test B. We then tweaked the 
necessary settings such as the dynamics and muscle size, as 
well as assigned joint/muscle influence weights to the skin 
vertices. We achieved appealing skin deformation which runs 
in real-time at about 60-70 fps. We have also simulated 
diverse character physiques resembling Hulk, Gollum and 
Jellyman, all from the same anatomical model, simply by 
tweaking global bulge, stiffness, damping and muscle weight-
scaling parameters. As shown in Fig. 7, our simplified curved 
axis representation is able to model the major muscles of a 
human. 

Figure 7: Approximation of different muscle shapes and 
deformation with only fusiform muscles 

6 Discussion and Future Work 
 Quite a few papers have been presented since the late 
90's on real-time muscle deformation. Yet, we have not seen 
their results filtering into commercial games. We feel this is 
due to  several unaddressed limitations: a) The ease of muscle 
design and parameter specification; b) Stability of simulation 
and deformation; c) The net complexity of deforming the 
muscles and skin for a full avatar in real-time. Let us first pick 
up all the related threads of research that this paper builds on. 



We will then discuss exactly how, why and what we 
simplified. Hopefully, this will shed better light on the value 
of our work and prove useful to the real-time graphics 
community. 

 Related Work: The use of procedural surfaces to model 
simplified muscles [11] was an exciting step forward from 
previous Finite Element deformation methods. The ellipsoidal 
fusiform model seemed perfect for interactive applications, 
and was naturally enhanced by [10] [2] [17]. Notable 
enhancements include: non-linear action axis; scaled irregular 
cross sections for volume preservation; local coordinates to 
facilitate proper deformation; and a network of 1D mass-
spring dynamics. These pieces of work were inspired by the 
need to model the superficial aesthetics of deforming muscles, 
without true volume dynamics. An implicit skin calculated 
from muscle contours [12] was sampled and re-meshed every 
frame [1]. Our paper has experimented with greater 
simplifications and we report that things still look good, and 
perform much faster. 

 Specifically, we have simplified four aspects: a) 
Representation of muscle action curve; b) Calculation of local 
coordinate frames; c) Usage of single mass-spring dynamics; 
d) Approximation of wrapped skin deformation. 

 Muscle Representation: We have seen how effectively 
[11] overlapped a bunch of fusiform shapes to approximate 
more complex human muscles like the Pectoralis Major. They 
achieved this with linear action axis. A curved axis could 
alleviate severe intersections of overlapped fusiforms, where 
some muscles in the bunch could be slightly "curved over" 
others. However, we feel that the cubic spline action curve in 
[17] is an overkill and the piecewise linear segments in [2] 
may yield discontinuities during dramatic flexion. The 
quadratic Bézier yields smooth uncomplicated curvature, at a 
more economical cost than [17]. It also exposes a free hanging 
center control point that can be conveniently hooked up to a 
single spring. Lastly, we have achieved more expressive 
volume deformation and taper with our scaled sinusoidal 
function. 

 Local Coordinate Frame at Muscle Vertices: Since the 
muscle surfaces are being driven by an underlying curve in [2] 
[17], both pieces of work stress on careful derivation of the 
local axes at each muscle vertex. Their interest was to position 
and render the muscle surfaces properly. We additionally use 
these coordinate frames to implement smooth skinned 
deformation for the character mesh. We replace two second-
order differential equations and a dot-product associated with 
the rotation minimizing frame in [17] with just two cross-
products. By allowing users to make judicious selections of the 
reference up vector, which is standard practice for a lot of 
graphical tools, we gain significant performance with 
predictable stability and minor additional specification. Since 
the tested skinned character meshes deform smoothly based on 
the relative transformation of these coordinate frames without 
any glitches or flips, it proves the stability of our simplified 
local coordinate frame derivation. 

 Muscle Mass-Spring Dynamics: Muscles have been 
traditionally modeled as a set of mass points connected 
together with springs, where elasticity, curvature and 
constraint forces could be exerted on each point [10]. We feel 
that this kind of detail is more relevant to medical simulation, 
and there is a lot of scope for simplification. The authors 
themselves pointed out that since a lot of muscles are covered 
by others, and all of them are covered by the skin, it does not 
really make sense to have a high degree of accuracy in the 
muscle representation to reflect the global animation. Taking 
up this point as a challenge, we decided to use only one mass 
point, to investigate how badly it affects the net skin 
deformation. We are pleasantly surprised to see that using 
standard mass, stiffness and damping settings for all the 
muscles, we could achieve a desirable degree of lag and 
oscillation that varies between heavy fats to taut muscular 
tissue. Similar dynamics settings for muscle bunches result in 
minimal intersection artifacts during animation, and thus 
remove the need for collision avoidance. Of course the soft-
body effect is more global than realistic tissue constrained 
between bones and skin, but the low cost of specification, 
control and simulation is quite attractive. Lastly, we have 
effectively tried out the cheaper Verlet integration method 
compared to 4th order Runge Kutta integration [10]. 

 Skin Deformation: The elastic skin membrane model 
[16] captures skin sliding and stretching with springs between 
every skin vertex, but is too expensive for real time (0.04fps 
on SGI R4400 quad CPU). The only muscle-based method that 
has been reported as real-time [1] (30fps for 14K vertices on 
R10000 Octane) is based on implicit surface generation from 
underlying ellipsoidal meta-balls [12]. We remove the online 
cost of intersecting rays with ellipsoid contours and re-
meshing every frame, by borrowing from the metaphor for 
skeletal deformation. Here, the per-muscle-vertex influence 
weights are pre-computed at bind pose, and scaled with per-
muscle influence weights (user defined or procedurally 
calculated). Up to 8 matrix multiplications and additions are 
done per skin-vertex, after updating the local coordinate 
frames for every muscle vertex. The inherent SIMD properties 
of both muscle formation and subsequent skin deformation 
promise easy mapping onto GPUs, something that is not so 
easily done using the method in [12]. Furthermore, though the 
implicit surface method is effective for characters with smooth 
cylindrical segments, there may be problems for meshes with 
folds and complicated topology.  Smooth skinning has been 
proven to work well with arbitrary topologies and thus is 
widely adopted in the industry. We have successfully 
demonstrated for the first time that approximate wrapping of 
underlying tissue surfaces yields believable results at a 
fraction of the cost of existing approaches. 

 In summary, we believe that we have addressed several 
major limitations that have restricted use of anatomy based 
skin deformation in real time applications. This is due to a 
combination of simplified representation, intuitive design 
workflow, and potential for hardware acceleration. We have 
demonstrated our system with a full-body game resolution 
character that performs vigorous motions with pleasing 
deformations at 60-80 fps on a standard PC with 2-3 GHz 
CPU and 1-2GB RAM.  



 As future work, we would like to use real values for 
muscle mass and stiffness from biomechanics literature, to 
build a knowledge base of generic musculature. We could try 
out a sparse network of springs to maintain more localized 
distortion for prominent muscles. We could borrow from 
existing weight transfer methods to reduce additional manual 
labor for painting muscle weights. We are currently working 
on a modular anatomy-based rigging system, to facilitate the 
building of arbitrary characters. Lastly, we plan to implement 
hardware acceleration using the new Shader Model 4.0 
architecture.  

 We are optimistic that this work will be adopted by the 
real-time content production industry, enabling appealing 
anatomy-based characters in next generation games and 
interactive media. 
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