
Simplified Muscle Dynamics for
Appealing Real-Time Skin Deformation

Keng Siang Lee

School of Computing
National University of Singapore

Singapore

Golam Ashraf
School of Computing

National University of Singapore
Singapore

Figure 1: Snapshots of a real-time virtual martial arts warrior, illustrating quadratic Bézier action curves hooked up with
single springs, sinusoidal fusiform muscles and final skin deformation via smooth skinning.

Abstract - We propose significant simplifications in
muscle modeling and simulation to facilitate real-time
anatomical skin deformation for full-body articulated
characters. The muscle shape is a function of an animated
quadratic Bézier action curve and control rings derived
from it. The action curve is uniformly sampled to derive
control rings driven by a scaled sinusoidal equation to
model fusiform shapes. A single spring is attached between
the central control point and the midpoint vector between
the extreme control points of the Bézier action curve. Care
is taken to stabilize local coordinates for each muscle
vertex to enable glitch-free skin deformation. The
character's polygonal mesh is smooth-skinned using a two-
layered approach: first to the joints, and then to the muscle
vertices. Lastly we show how different prominent muscles
can be reasonably approximated with the proposed
fusiform model. A typical 4000-vertex character skinned
with sixty four 72-vertex muscles is able to run on average
CPUs at 60-80 fps. Our main contribution is the simplified
dynamics driven curved action-axis, which enables
economical and expressive muscle animation.

Keywords: Muscle-based deformation, real-time
dynamics, appealing characters.

1 Introduction
 Appealing character deformation could play an essential
role in believable gaming and virtual world experience.
Character traits like sluggishness, power, etc. can be

emphasized much better with anatomy-driven deformation
than current real-time skeletal deformation of surfaces. Such
visual emphasis of traits affords better immersion and
connection to virtual characters. However, the high simulation
cost of anatomy-driven deformations has limited their
application in the real-time domain. On the other hand, video
games have been steadily pushing the quality envelop, given
rapid advances in hardware and increasing consumer appetite.
Realistic and appealing deformation for game characters is
therefore a relevant topic for the modern game industry.

 Layered anatomical models have achieved body
deformation with accurate muscle, bone, fat and skin
dynamics. They achieve more robust results than analytical
surface deformation models like smooth-skinning. Localized
details like muscle bulges, sliding and stretching of skin over
bones, loose skin, etc. are better captured with anatomical
methods. Some of these features are being adapted to
interactive applications, by pre-computing the dynamics
simulation, and "playing back" the most appropriate
approximation in response to event triggers. Though this
alleviates the abovementioned limitations, it still lacks the
expressive repertoire of accurate simulations. In some cases,
the played-back dynamics response may even violate physical
constraints.

 In this paper, we address the lack of efficient dynamics
methods to achieve anatomy-driven body deformation in real-
time. We propose a flexible muscle representation that can be
economically driven by single-spring dynamics. We adapt the
smooth-skinning metaphor to blend conventional skeleton-
driven deformation with our muscle-driven deformation. The
resulting muscle-based skin contouring and oscillation

(commonly termed as jiggle) can generate significant appeal to
real-time characters.

 The focus of this paper is not on accurate muscle
modeling but on simulating efficient local deformations and
oscillations which increase visual appeal without violating
significant physical constraints. We also demonstrate how a
variety of prominent muscles can be modeled with the same
generic representation, aided with intuitive design tools.

2 Previous Works
 An in-depth survey on recent multi-layered anatomical
models and skin deformation can be found in [9] [2] [10]. We
choose to summarize the methods here for completeness, and
later present a more focused comparison of our proposals with
relevant methods (see Sec. 6).

 Multi-layered anatomical models have been organized
into skeleton, muscle, fatty tissues and skin layers. The
skeleton is first defined using joint design tools. Muscle
primitives are then added, with the origin and insertion points
of each muscle constrained to the appropriate joints. The skin
surface could be handcrafted or "draped" over the muscles
using contour detection and implicit functions. Different levels
of dynamics and kinematics constraints control the
deformation of these models, using procedural volume
preservation, elasticity, collision avoidance, and weighted
influence functions. The general complexity of these
representation and control methods make anatomical models
difficult to realize in real-time.

 [4] used Free-Form Deformations (FFD) to approximate
muscle deformation. [8] applied Dirichlet Free-Form
Deformation method (DFFD) for hand deformation. It is
generally hard to emulate muscles in complex regions such as
the shoulders, since the relationships between FFD
deformations and high-dimensional joint rotations are not well
defined. Finite Element Mechanics (FEM) models accurately
deform volumes defined by connected cells that impart torsion
forces on each other using physics of energy transfer [15].
However they are usually too complex for real time
simulation.

 [11] proposed several surface representations for muscle
models that could be deformed with volume preservation
formulae. They modeled simple fusiform muscles with
ellipsoids and multi-belly sheet-like muscles with multiple
instances of these fusiform muscles. [16] used similar volume-
preserved cylinders, where each muscle segment's influence on
skin vertices was analytically calculated. The fusiform model
was further enhanced with spring constraints [10], stable local
coordinates [2] and curved action axis [17]. Though these
enhancements increase the generality of the fusiform muscle's
shape and motion, they add significantly to the computation.
Real time performance of these models had been demonstrated
using only a few muscles at a time, without any skin
deformation. We draw inspiration from these enhancements,
and simplify their representation to facilitate fast stable
animation for full-body humans (see Sec. 3).

 [14] [16] modeled sophisticated elastic skin models that
are first deformed by muscle slices, and then skin triangles are
adjusted based on spring forces on each edge. Though such
elastic models achieve several interesting effects like skin
sliding and stretching, the simulation cost is again too high for
real time performance. [16] chose to statically bind the skin
layer and move it relative to underlying tissue deformation. [7]
presented a similar approach in blending handcrafted shapes
with skin deformed by skeletal motion. A different approach is
adopted in [1] who used per-frame mesh regeneration by
sampling the implicit surface envelop of underlying tissue. As
[16] pointed out, this approach may have repercussions on
faithful texture movement for non-smooth surfaces. We draw
inspiration from the unified approach to skin deformation in
[16] and [7], and propose a smooth-skinned solution for
muscle deformation (see Sec. 3 and 4).

 We feel that an expressive and simplified muscle/skin
framework is sufficient for current real-time applications. Our
goals are to afford easy setup and representation of muscles,
minimal semi-automatic pre-computation steps, economical
on-the-fly dynamics simulation, and a skin deformation
framework that builds on top of existing smooth skinning to
joints. Most importantly, it should be easy to blend our
methods with existing character production pipelines, so that
we can see their rapid incorporation in commercial games.

 In this paper, we propose an adaptation to the surveyed
musculature modeling methods to facilitate efficient dynamics
simulation. First we explain muscle representation using
quadratic Bézier curves. We derive local coordinate frames for
each cross section of the muscle, before presenting the shape
construction with volume preservation. Next we explain the
simplified single-spring dynamics representation and
simulation mathematics. We then describe how we combine
joint and muscle based deformation on the polygonal character
mesh using the smooth-skinning metaphor. Lastly, we present
the results and a critical analysis of our contributions.

3 Muscle Creation
3.1 Representation Using Quadratic Bézier

Action Curve
 As proposed by [10] and [1], the action line drives the
shape and movement of the associated muscle. It is
constrained to skeletal joints and moves with them. Forces and
collision detection required to control the movement of
individual action line segments may prove expensive for real-
time applications. [17] first proposed action curves using cubic
rational B-Spline instead. Although their representation is
more general, we believe that the overhead involved in
calculating C2 smooth action curves is unnecessary, as muscles
generally look alright with C1 continuity. We propose a
quadratic Bézier curve representation for the action curve, to
facilitate faster computation and simpler control. The shape of
the entire action curve can be changed by just manipulating
the middle control point. We chose simplicity in calculation
and representation, as this element is a basic building block
that needs to be recomputed often (usually 60-100 per

character). From our tests, we observe that the quadratic
Bézier curves adequately define shape and movement for real-
time muscles.

Figure 2: The three control points Porg (1), Pmid (2) and Pins (3) of
the muscle action curve, the constrained control point Pconst (4),
and the two attachment joints (5 and 6). Notice how Pmid moves

towards Pconst when perturbed, causing the Bézier curve to change
shape smoothly.

 A quadratic Bézier curve requires three control points
(P0, P1, P2) which can be mapped to the muscle origin, mid-
point, and insertion point (Porg, Pmid, Pins), as shown in Fig. 2.
During muscle creation, the origin and insertion joints of the
skeleton are chosen, and Porg and Pins are parented to these 2
joints respectively. These two control points can be in any
arbitrary position (usually guided by anatomical information)
in their respective parent's coordinate frame. By default, Pconst
is constrained to the midpoint between Porg and Pins, but the
user can shift this control point to change the muscle
curvature. Pconst retains user-defined offsets when Porg and Pins
move with the joints (see Fig. 2).

 The second control point of the Bézier curve is
represented by a freely-hanging dynamic control point Pmid,
which is attached to Pconst via a spring. The Bézier action curve
is created from the control points (Porg, Pmid , Pins), so that the
muscle moves with soft-body dynamics as the joints (and
consequently Pconst) move in space. The soft body oscillations
are especially noticeable immediately after the origin/insertion
bones come to rest.

3.2 Construction of Local Coordinate Frame
 After creating the action curve, we sample Ncs uniformly
spaced points along the curve, where Ncs is a user specified
number. Each of the points represents the center Ci of each
cross-sectional slice i of the muscle. We then need to construct
the local coordinate frame for each of these cross-sections. We
choose to avoid the Frenet frame formulation because of the
problems identified in [17]. The normal (calculated as a
second derivative) at point p(u) on the curve is sensitive to the
curve shape (see Fig. 3a). In other words, the cross-section
coordinate frame starts rotating as the action curve changes
shape, causing the resultant muscle shape to twist undesirably
along its main action curve axis during animation.
Furthermore, the normal for p(u) is undefined for a straight
line, which may be the initial state of an action curve.

 Figure 3: Stable Local Coordinate Frame. a) Normal inverts due
to change in action curvature; b) This problem is solved by using

a reference up-vector (big arrow).

 To stabilize the abovementioned problem, we choose a
user-defined up-vector v (large arrow in Fig. 3b) to derive the
local coordinate frame. We use the tangent of the curve at p(u)
(where p(u) = Ci) and the up-vector v for the entire muscle, to
construct a local coordinate frame that is independent of the
shape of the action curve. First, the normalized curve
derivative is calculated at cross-section i (Eqn. 1). Two other
orthogonal axes are then calculated.

|)('|
)('ˆ

up
upai = [1]

vac ii ˆˆ ×= [2]

iii acb ˆˆ ×= [3]

 The axes of the coordinate frame for cross-section i are
then , and , which correspond to the local x, y and z
axes respectively. The up-vector v is set to the joint's local y-
axis by default and could be changed interactively via the
muscle setup tool. Note that the local coordinate frame of a
cross-section will twist by 180 degrees sharply if the tangent
vector coincides with the up-vector direction. This depends
on the range of motion of the muscles as the joints rotate. If
such an event is likely to happen, the up-vector should be
manually adjusted so that will never cross its direction. For
example, it can be changed to a direction that is orthogonal to
the range of motion for the given muscle.

iâ ib̂ iĉ

iâ

iâ

3.3 Construction/Control of Muscle Shape
 With the local coordinate frame defined for each cross-
section of the muscle, we can now determine the positions of
the muscle vertices in order to define shape. The goal of our
formulation is to generate more expressive shapes than
existing methods in [11] [16] [10] [17], without adding much
computation complexity. We characterize the fusiform muscle
with two main properties: bulge size S and taper T. The size
parameter controls the girth of the center of the fusiform
shape. Apart from the normal volume-preservation related
deformation, this parameter is also useful for isometric
contraction simulation where the muscle bulge increases
without a change in muscle length. The taper parameter
controls the curvature at end points, which is useful for
approximating tendons.

The bind pose radius ri of each muscle cross-section is
calculated as:

)
1

1(sin π
−

−
=

cs

T
i N

iSr [4]

 Each muscle cross-section i has a user-defined Ndiv
number of muscle vertices it will control. Each of these
vertices vij (where j=1, 2,..., Ndiv) has an offset oij from the
cross-section center Ci. This offset is stored in the local
coordinate system of cross-section i. When the muscle is
created initially, each of the vertices vij for cross-section i will
get the offset value assigned as oij = ri. The local coordinate
frame of each muscle vertex vij is a simple addition of its offset
oij with the local coordinate frame of cross-section i. We allow
these offsets to be adjusted by the user through our muscle
shaping tool implemented in MayaTM in order to sculpt
arbitrary shapes easily (see muscle design workflow in Fig. 4).
Such an offset-from-center representation also allows for CT
scan information of real muscle cross-sections to be
incorporated [10] [17]. During simulation, the cross-section
offsets are proportionally scaled by volume-preserved shape
distortion functions (see Sec 3.4).

Figure 4: Expressive shape representation.
TOP: Shapes achieved with different size and taper settings;

BOTTOM: Muscle design workflow - a) Affix to skeleton; b) Set
size, taper and control ring radius; c) Sculpt muscle; d) Tweak

action axis curvature; e) Test deformation for joint motion range

3.4 Muscle Deformation
 The basic volume preservation of the muscle is based on
an approximation of the fusiform shape by an ellipsoid model
[16] [11]. The volume of an ellipsoid is:

lrV 2

3
4π= [5]

where r is the radius of the mid cross-section and l is the
length of the ellipsoid. The l in this case represents the
Euclidean distance between Porg and Pins of the action curve,
instead of the actual arc length of the action curve which is
computational expensive to calculate. Although this
approximation may violate the volume preservation axiom, it

can be compensated with a scaling factor (described later in
Eqn. 7).

 We can calculate each new offset oij' as l changes, by
using this proportional relationship (derived from Eqn. 5):

ij

new

rest
ij o

l
lo =' [6]

where lrest is the rest length of the muscle in bind pose and lnew
is the new muscle length at a certain time instance.

 However, we have observed that the general ellipsoid
volume preservation method [11] does not yield visually
obvious deformation due to small changes in muscle lengths
(typical of humanoid characters). Our aim is to have visually
appealing skin deformations, so muscle bulges must be
perceptible. Thus we added a new layer of control that allows
the user to non-linearly scale the volume of the muscle as the
length changes, as shown in Eqn. 7. This is modeled by a
scaled sinusoidal function which causes no additional bulge at
rest length. In the equations below, B is the bulge multiplier
and ∆l is the length difference (lrest - lnew).

ij
new

rest
ij o

l
l

LBo))
2

sin(1(' Δ+=
π [7]

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
>Δ

×
Δ

Δ

=Δ
otherwise

lif

Rl
l

l
l

L

rest

rest

0

1
 [8]

 We realized that with Eqn. 7, the muscle works well for
flexion but thins out significantly when stretched. Thus we
introduced another user-defined positive-valued attribute
bulge-to-stretch-ratio R to counter this effect. This is taken
care of in the second condition in Eqn. 8.

Figure 5: With and without the bulge multiplier B. The muscle in
the middle without the multiplier produces bulges which are

mathematically correct but hardly noticeable while the muscle on
the right with the multiplier produces visually noticeable bulges.

3.5 Muscle Dynamics
 We now present the dynamics calculations performed on
the underlying Bézier action curve. A spring is attached to the
control points Pmid and Pconst. This spring produces a force at
each time-step ∆t that causes Pmid to move towards Pconst. Since
Pmid is the middle control point which determines the curvature

of the Bézier curve, the Bézier curve changes its shape as Pmid
moves. The force exerted on Pmid (Hooke's Law, Eqn. 10) and
then its acceleration (Newton's Law, Eqn. 11) is calculated:

 [9])()()(txtxtx constmid −=Δ
 [10])()(txktF sspring Δ−=

musclespringmid mtFtx /)()(=&& [11]

where x(t) represents control point position at time t, ks is the
user-defined spring constant and mmuscle is the user-defined
mass of the muscle.

 Verlet integration is used to find the position of Pmid at
the end of each time-step. This method was chosen because it
offers more stability at almost the same cost as simpler
integration methods such as Euler integration, and is faster
than accurate methods such as 4th-order Runge-Kutta. We
have used a modified Verlet integration scheme which allows
for a simple damping effect:

)()2()()1(
))(()(2

txfttxf
ttxttx

midmid

midmid

−+Δ−−−
Δ=Δ+ && [12]

 Notice that the velocities of Pmid and Pconst (required by
Forward Euler and other conventional integration methods)
have been omitted from all the above equations. Velocity is
normally used to determine the amount of drag force affecting
an object. However, the drag force is approximated by scaling
the last two terms in Eqn. 12 with , a user-specified
damping coefficient. This omission of velocity implies fewer
calculations per time-step.

]1,0[∈f

Figure 6: Single spring dynamics achieve pleasing drag and
oscillation for a set of leg muscles

4 Skin Deformation
 A two-layer skinning approach is used to skin the
character's polygonal mesh. The first layer is the usual
smooth-skinning of mesh vertices to joints, giving basic
deformation of the mesh at acceptable cost. The second layer
is the smooth skinning of the mesh to vertices of influencing
muscles. This allows for addition of local deformation and
oscillation to the skin, due to underlying muscle distortion and
dynamics. We now look at these two levels of skinning in
detail.

 The smooth skinning of the mesh to joints is done in the
conventional way:

∑ −= 0
1

int vBMwv iiijo
 [13]

where vjoint is the final skin vertex position in world space due
to joint influence, wi is the weight of joint i, Mi is the current
world matrix of joint i, Bi is the bind pose world matrix of
joint i, and v0 is the bind pose skin vertex position in world
space. We restrict each skin vertex to be influenced by a
maximum of 3 joints, and weight paint tools have been setup
in MayaTM to allow for intuitive weights assignment.

 Next we need to make an association between the skin
vertices and the muscle vertices which influence them. Each
skin vertex in bind-pose is associated with the nearest Nm
muscle vertices. The muscle-vertex-to-skin-vertex weight is
obtained by taking the inverse of the separation distance so
that nearer points get more weight. After these computed
weights are normalized, the user can assign weights for the
association between skin vertices and entire muscles (not
muscle vertices). This is done using the same weight
assignment tool, exactly following the weight painting
metaphor for smooth skinning with bones. This stage
explicitly allows users to control the amount of influence from
underlying muscles on various parts of the skin mesh.

 Each of the skin vertices are affected by the muscle
vertices via smooth skinning, similar to Eqn. 13:

∑ −= 0
1'''')(vBMwWv iiiimuscle

 [14]

where vmuscle is the final smooth-skinned point in world space
after muscle deformation, W'i is the weight of the i-th muscle
that is affecting the skin vertex, w'i is the weight of the i-th
muscle vertex that is affecting the skin vertex and v0 is the
bind pose skin vertex position in world space. M'i is the
current world matrix and B'i is the bind pose world matrix for
each associated muscle vertex. These matrices are derived
from the local coordinate frames described in Sec. 3.2 and 3.3.

 We pre-multiply W'iw'i (Eqn. 14) for the purpose of
efficient storage and computation. We also pre-multiply Bi

-1v0
(Eqn. 13) and B'i-1v0 (Eqn. 14) to save repeated matrix
multiplications.

 The final position of each vertex is calculated by
blending the results of Eqn. 13 and 14 together:

musclejofinal vvv += int [15]

 Note that ∑ =+ 1'' iii wWw and we enforce this

constraint during weight painting. This ensures that there is no
need to explicitly weight vjoint and vmuscle and normalize vfinal in
Eqn. 15, thus saving expensive division operations. In our
demo [6], we allow for scaling of the components in Eqn. 15
for quick feedback on different weight blending effects.

 By using the smooth skinning metaphor, we have
managed to retain the simplicity and additive nature of skin
deformation even after influencing muscles have been added.
We have implemented the muscle weight paint tool to closely
mimic the joint weight paint tool, to facilitate easy usage by
artists who are familiar with existing weight paint workflows.
The muscle-vertex-to-skin-vertex weight complexity is
purposely hidden from users to protect them from laborious
extra specification. By setting reasonable constraints to the
number of influence joints and muscle vertices, we ensure that
the deformation structure does not bloat unmanageably.

5 Results
 A well-defined primary character might contain around
70-80 muscles while a secondary character might contain
around 30-40 muscles by simplifying muscle groups. We
assign 72 vertices per muscle to achieve reasonable binding
results without flickers or sharp edges. Each muscle is attached
to only two joints, thus the total number of joints does not
affect the performance of the system.

 Test A - Muscle Dynamics: We examined how well a
maximum of 200 muscles (approximately 2.5 main characters)
runs on an average system of 2.6GHz with 2.0GB RAM and
GeForce 7800GS graphics card. These muscles were subjected
to constant movement for 20 seconds, and the average FPS
was recorded (see Table 1). The average frame-rate for 200
muscles is 35fps and this shows that our muscle setup (with no
skinning yet) is efficient in delivering real-time dynamics-
based movements, for 2-5 characters.

Muscles 20 40 60 80 100
Avg FPS 267 157 111 85 70
Muscles 120 140 160 180 200
Avg FPS 59 50 44 39 35
Table 1: Muscle dynamics performance (without skinning)

 Test B - Skinning: A typical game character is skinned
to 21 joints (with each skin vertex affected by a maximum of 3
joints) and 0-80 muscles (with each skin vertex affected by a
maximum of 4 muscle vertices). As before, the number of
joints does not affect the performance of the system. We used
up to 20,000 skin vertices and subjected the character to
constant motion for 20 seconds. The results are as follows:

No. of
Muscles

5000
vertices

10000
vertices

15000
vertices

20000
vertices

0 146 105 68 58
10 92 53 35 29
20 81 48 32 27
30 73 43 30 25
40 67 41 28 24
50 62 38 27 23
60 59 36 26 22
70 57 34 25 21
80 55 33 24 20

Table 2: Average muscle simulation and skin deformation
performance in FPS for different skin mesh resolutions

 The case with 0 muscles serves as a control, to indicate
the cost of rendering and skeletal deformation without
muscles. As shown in the results, we are able to get real-time
performance with 70-80 muscles (with 72 vertices each). Thus
we have already achieved efficient results using the CPU
alone.

 Test C - Appealing Deformation In Real-Time: We
have achieved a full-body muscle representation that deforms
a character's skin in real time without any significant artifacts,
and that too, without any hardware acceleration. The real-time
executable demo of an energetic virtual martial artist
accompanying this paper [6] comprehensively validates our
claims. We created a character with 3671 vertices and skinned
it to 21 joints and 64 muscles. All other muscle and influence
settings were identical to Test B. We then tweaked the
necessary settings such as the dynamics and muscle size, as
well as assigned joint/muscle influence weights to the skin
vertices. We achieved appealing skin deformation which runs
in real-time at about 60-70 fps. We have also simulated
diverse character physiques resembling Hulk, Gollum and
Jellyman, all from the same anatomical model, simply by
tweaking global bulge, stiffness, damping and muscle weight-
scaling parameters. As shown in Fig. 7, our simplified curved
axis representation is able to model the major muscles of a
human.

Figure 7: Approximation of different muscle shapes and
deformation with only fusiform muscles

6 Discussion and Future Work
 Quite a few papers have been presented since the late
90's on real-time muscle deformation. Yet, we have not seen
their results filtering into commercial games. We feel this is
due to several unaddressed limitations: a) The ease of muscle
design and parameter specification; b) Stability of simulation
and deformation; c) The net complexity of deforming the
muscles and skin for a full avatar in real-time. Let us first pick
up all the related threads of research that this paper builds on.

We will then discuss exactly how, why and what we
simplified. Hopefully, this will shed better light on the value
of our work and prove useful to the real-time graphics
community.

 Related Work: The use of procedural surfaces to model
simplified muscles [11] was an exciting step forward from
previous Finite Element deformation methods. The ellipsoidal
fusiform model seemed perfect for interactive applications,
and was naturally enhanced by [10] [2] [17]. Notable
enhancements include: non-linear action axis; scaled irregular
cross sections for volume preservation; local coordinates to
facilitate proper deformation; and a network of 1D mass-
spring dynamics. These pieces of work were inspired by the
need to model the superficial aesthetics of deforming muscles,
without true volume dynamics. An implicit skin calculated
from muscle contours [12] was sampled and re-meshed every
frame [1]. Our paper has experimented with greater
simplifications and we report that things still look good, and
perform much faster.

 Specifically, we have simplified four aspects: a)
Representation of muscle action curve; b) Calculation of local
coordinate frames; c) Usage of single mass-spring dynamics;
d) Approximation of wrapped skin deformation.

 Muscle Representation: We have seen how effectively
[11] overlapped a bunch of fusiform shapes to approximate
more complex human muscles like the Pectoralis Major. They
achieved this with linear action axis. A curved axis could
alleviate severe intersections of overlapped fusiforms, where
some muscles in the bunch could be slightly "curved over"
others. However, we feel that the cubic spline action curve in
[17] is an overkill and the piecewise linear segments in [2]
may yield discontinuities during dramatic flexion. The
quadratic Bézier yields smooth uncomplicated curvature, at a
more economical cost than [17]. It also exposes a free hanging
center control point that can be conveniently hooked up to a
single spring. Lastly, we have achieved more expressive
volume deformation and taper with our scaled sinusoidal
function.

 Local Coordinate Frame at Muscle Vertices: Since the
muscle surfaces are being driven by an underlying curve in [2]
[17], both pieces of work stress on careful derivation of the
local axes at each muscle vertex. Their interest was to position
and render the muscle surfaces properly. We additionally use
these coordinate frames to implement smooth skinned
deformation for the character mesh. We replace two second-
order differential equations and a dot-product associated with
the rotation minimizing frame in [17] with just two cross-
products. By allowing users to make judicious selections of the
reference up vector, which is standard practice for a lot of
graphical tools, we gain significant performance with
predictable stability and minor additional specification. Since
the tested skinned character meshes deform smoothly based on
the relative transformation of these coordinate frames without
any glitches or flips, it proves the stability of our simplified
local coordinate frame derivation.

 Muscle Mass-Spring Dynamics: Muscles have been
traditionally modeled as a set of mass points connected
together with springs, where elasticity, curvature and
constraint forces could be exerted on each point [10]. We feel
that this kind of detail is more relevant to medical simulation,
and there is a lot of scope for simplification. The authors
themselves pointed out that since a lot of muscles are covered
by others, and all of them are covered by the skin, it does not
really make sense to have a high degree of accuracy in the
muscle representation to reflect the global animation. Taking
up this point as a challenge, we decided to use only one mass
point, to investigate how badly it affects the net skin
deformation. We are pleasantly surprised to see that using
standard mass, stiffness and damping settings for all the
muscles, we could achieve a desirable degree of lag and
oscillation that varies between heavy fats to taut muscular
tissue. Similar dynamics settings for muscle bunches result in
minimal intersection artifacts during animation, and thus
remove the need for collision avoidance. Of course the soft-
body effect is more global than realistic tissue constrained
between bones and skin, but the low cost of specification,
control and simulation is quite attractive. Lastly, we have
effectively tried out the cheaper Verlet integration method
compared to 4th order Runge Kutta integration [10].

 Skin Deformation: The elastic skin membrane model
[16] captures skin sliding and stretching with springs between
every skin vertex, but is too expensive for real time (0.04fps
on SGI R4400 quad CPU). The only muscle-based method that
has been reported as real-time [1] (30fps for 14K vertices on
R10000 Octane) is based on implicit surface generation from
underlying ellipsoidal meta-balls [12]. We remove the online
cost of intersecting rays with ellipsoid contours and re-
meshing every frame, by borrowing from the metaphor for
skeletal deformation. Here, the per-muscle-vertex influence
weights are pre-computed at bind pose, and scaled with per-
muscle influence weights (user defined or procedurally
calculated). Up to 8 matrix multiplications and additions are
done per skin-vertex, after updating the local coordinate
frames for every muscle vertex. The inherent SIMD properties
of both muscle formation and subsequent skin deformation
promise easy mapping onto GPUs, something that is not so
easily done using the method in [12]. Furthermore, though the
implicit surface method is effective for characters with smooth
cylindrical segments, there may be problems for meshes with
folds and complicated topology. Smooth skinning has been
proven to work well with arbitrary topologies and thus is
widely adopted in the industry. We have successfully
demonstrated for the first time that approximate wrapping of
underlying tissue surfaces yields believable results at a
fraction of the cost of existing approaches.

 In summary, we believe that we have addressed several
major limitations that have restricted use of anatomy based
skin deformation in real time applications. This is due to a
combination of simplified representation, intuitive design
workflow, and potential for hardware acceleration. We have
demonstrated our system with a full-body game resolution
character that performs vigorous motions with pleasing
deformations at 60-80 fps on a standard PC with 2-3 GHz
CPU and 1-2GB RAM.

 As future work, we would like to use real values for
muscle mass and stiffness from biomechanics literature, to
build a knowledge base of generic musculature. We could try
out a sparse network of springs to maintain more localized
distortion for prominent muscles. We could borrow from
existing weight transfer methods to reduce additional manual
labor for painting muscle weights. We are currently working
on a modular anatomy-based rigging system, to facilitate the
building of arbitrary characters. Lastly, we plan to implement
hardware acceleration using the new Shader Model 4.0
architecture.

 We are optimistic that this work will be adopted by the
real-time content production industry, enabling appealing
anatomy-based characters in next generation games and
interactive media.

7 References
[1] AUBEL A., BOULIC R., THALMANN D.: Realtime
display of virtual humans: Levels of details and impostors.
Circuits and Systems for Video Technology, IEEE
Transactions on (2000), pp 207–217.

[2] AUBEL A., THALMANN D.: Interactive modeling of
the human musculature. Computer Animation (2001), pp 167–
255.

[3] ASHRAF G., ZHOU J. Y.: Hardware accelerated skin
deformation for animated crowds. Multimedia Modeling (Jan
2007), pp 226–237.

[4] CHADWICK J. E., HAUMANN D. R., PARENT R. E.:
Layered construction for deformable animated characters.
SIGGRAPH (1989), pp 243–252.

[5] JAMES D., PAI D.: DyRT: Dynamic response textures
for real time deformation simulation with graphics hardware.
SIGGRAPH (2002), pp 582–585.

[6] LEE K. S., ASHRAF G.: Demo of real-time muscle
deformation. http://cg.skeelogy.com/research/simplified-
muscle-dynamics.php (2007).

[7] LEWIS J. P., CORDNER M., FONG N.: Pose space
deformation: A unified approach to shape interpolation and
skeleton-driven deformation. SIGGRAPH (2000), pp 165–
172.

[8] MOCCOZET L., THALMANN N. M.: Dirichlet free-
form deformations and their application to hand simulation.
Computer Animation (1997), pp 93.

[9] NEALEN A., MULLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in
computer graphics. EUROGRAPHICS (2005), pp 289–301.

[10] NEDEL L. P., THALMANN D.: Real time muscle
deformations using mass-spring systems. Computer Graphics
International (1998), pp 156–165.

[11] SCHEEPERS F., PARENT R. E., CARLSON W. E.,
MAY S. F.: Anatomy-based modeling of the human
musculature. SIGGRAPH (1997), pp 163–172.

[12] SHEN J., THALMANN D.: Interactive shape design
using metaballs and splines. Implicit Surfaces (1995), pp 187–
196.

[13] SHEPPARD, J.: Anatomy: A complete guide for artists.
Dover Publications (1992).

[14] TURNER R., THALMANN D.: The elastic surface layer
model for animated character construction. Computer Graphics
International (1993), pp 399–412.

[15] WU X., DOWNES M. S., GOKTEKIN T., TENDICK
F.: Adaptive nonlinear finite elements for deformable body
simulation using dynamic progressive meshes. Computer
Graphics Forum (2001), pp 349–358.

[16] WILHELMS J., GELDER A. V.: Anatomically based
modeling. SIGGRAPH (1997), pp 173–180.

[17] ZUO L., LI J. T., WANG Z. Q.: Anatomical human
musculature modeling for real-time deformation. WSCG
(2003).

	1 Introduction
	2 Previous Works
	3 Muscle Creation
	3.1 Representation Using Quadratic Bézier Action Curve
	3.2 Construction of Local Coordinate Frame
	3.3 Construction/Control of Muscle Shape
	3.4 Muscle Deformation
	3.5 Muscle Dynamics

	4 Skin Deformation
	5 Results
	6 Discussion and Future Work
	7 References

